

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - APRIL 2013

MT 5505/MT 5501 - REAL ANALYSIS

Date: 08/05/2013	Dept. No.	Max. : 100 Marks

Time: 9:00 - 12:00

PART - A

Answer all questions $(10 \times 2 = 20)$

- 1. Show that Z and N are similar.
- 2. Define subsequence of a sequence.
- 3. Define compact set and give an example for it.
- 4. Give an example of a (i) countably infinite set and (ii) uncountably infinite set.
- 5. Show that in a metric space, 'limit of a sequence is unique'.
- 6. Define complete metric space and give an example for it.
- 7. Give an example of a strictly increasing function and strictly decreasing function.
- 8. Show that every differentiable function is also continuous.
- 9. Define limit superior and limit inferior of a real sequence.
- 10. Define Riemann-Stieltjes integral of a function f with respect to α on [a, b].

PART - B

Answer any FIVE questions

(5x8 = 40)

- 11. Define greatest common divisor of two integers and show that for any two integers a and b g.c.d.is of the form $\lambda a + \mu b$ where λ and μ are integers.
- 12. Show that $e = 1 + \frac{1}{1!} + \frac{1}{2!} + ...$ is irrational.
- 13. Show that finite intersection of open sets is open and infinite intersection of open sets need not be open.
- 14. Show that every compact subset of a metric space is complete.
- 15. State and prove Minkowski's inequality.
- 16. Let f and g be functions of bounded variations defined on [a,b]. Show that f+g and fg are also of bounded variations on [a,b].

17. Show that
$$\sum_{k=1}^{n} \frac{1}{k} = \log n - \int_{1}^{n} \frac{x - [x]}{x^{2}} dx + 1.$$

18. Suppose $c \in (a,b)$ and $\int_{a}^{c} f d\alpha$, $\int_{c}^{b} f d\alpha$ exist. Prove that $\int_{a}^{b} f d\alpha$ exists and $\int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha = \int_{a}^{b} f d\alpha$.

PART - C

Answer any TWO questions

(2x20=40)

- 19. (A) State and prove Cauchy Schwarz inequality.
 - (B) Prove that (0,1) is uncountable and hence deduce that R is uncountable.
- 20. (A) Show that a subset E of a metric space (X, d) is closed in X if and if it contain all its adherent points.
 - (B) State and prove Bolzano- Wierstrass theorem.
- 21. (A) Show that Euclidean space \mathbb{R}^k is complete.
 - (B) Show that a continuous function defined on a compact metric space is uniformly continuous.
- 22. (A) State and prove Taylors theorem.
 - (B) State Rolle 's Theorem.

\$\$\$\$\$\$\$